If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+44t+36=0
a = -16; b = 44; c = +36;
Δ = b2-4ac
Δ = 442-4·(-16)·36
Δ = 4240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4240}=\sqrt{16*265}=\sqrt{16}*\sqrt{265}=4\sqrt{265}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{265}}{2*-16}=\frac{-44-4\sqrt{265}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{265}}{2*-16}=\frac{-44+4\sqrt{265}}{-32} $
| B=10+6(2b+2 | | ww−=−−6411 | | 2(3x+7)=4x+x-14 | | -8c+1=-8 | | 7x-4(2x-5)=-11 | | X-0.23x=2200 | | -9-4=z/3 | | n+(n+1)+(n+2)=63 | | 10=-4+w/4 | | 4t2+7t–11=0 | | -45x(9+1=0 | | P(x)=80/(33x)-(13x+80) | | 20=8-6q | | -16t2+44t+32=0 | | 2x-6=110 | | 3x+(5x-18)=108 | | x=(3 | | 5^2x+1=8 | | 12a+5a-13a=18+13 | | 12000(2)t/2=50000 | | 2(2x+5)=2-2(3x+1) | | 4(7x+8)=28x+32 | | 380=2w+40+w | | 23+x=2x-1 | | 14-x=26 | | 5.36+4x=16.2 | | 18/74=x/27 | | 4x+2x=42+2x | | 380=2(w+20)+w | | 3b÷4=51 | | w+1(w+20)=380 | | 3b/4=51 |