If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+160=0
a = -16; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-16)·160
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*-16}=\frac{0-32\sqrt{10}}{-32} =-\frac{32\sqrt{10}}{-32} =-\frac{\sqrt{10}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*-16}=\frac{0+32\sqrt{10}}{-32} =\frac{32\sqrt{10}}{-32} =\frac{\sqrt{10}}{-1} $
| 30d=6 | | 34-2x=29+18x | | 37=b4+33 | | 37=b4+ 33 | | 7=70f | | 22=11/4x | | 6-7=4x+17 | | 200+6x=-6 | | 22=11/4c | | 68−g=7 | | 5(2x-5)=10x-15 | | 42/2x+6x/3=6 | | 6a+23a=180 | | 150m-125m+43.875=45.900-200 | | 5p-5p=-24-2p4p | | 150m-125m+43.875=45.9-200/ | | 5(x-4)=5(x+6) | | 5(x+4)=5(x-4) | | x/2+4=-1/4 | | x2+9x-400=0 | | 3x+2=-2x-4 | | 5p-6=8 | | 5(3x+2)-7=63 | | 6X^2+15x=84 | | -2(x-3)+5=-39 | | 5p+11-3p-1=9p-11 | | 2x+6/4x=10 | | -5(x-1)+1=-(x-2) | | -5(x-1)+1=-(x-2 | | 5a-2(2a-7)+5=2(3a-1)+7+2(a+3)-9 | | 21+18g=42=11g | | 14+4=8+6y-2y-2 |