If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+144=0
a = -16; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-16)·144
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*-16}=\frac{-96}{-32} =+3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*-16}=\frac{96}{-32} =-3 $
| 34+b+146=180 | | -6(x+7=-4x-2 | | 6n-10=15+4n | | 5,1x-0,8=2,1 | | 6a-4a=2a+2a | | 4x2+11x-35=0 | | 2x/9=7/5 | | 12x-56=-4x+24 | | 838=(60x) | | 838=960x0 | | X+68+2x+123=180 | | -9x–15=93 | | 2y+-3(-1)=6-4y | | 10x2+9=499 | | x+33+2x-9+x=180 | | 3(x-3)^=48 | | 6=4y-18 | | 20-2(4-y)=y+9 | | 18z^2+26=0 | | 21.8x+x=-49.7 | | x/22+9=30 | | -24=4x=4 | | 8-5r=-7 | | 3*3+2y=11 | | 4(3x-15)=120 | | x+(x+5)/8=(x+5)/16 | | 7x2-6=57 | | r=250/2000 | | 5(3s+9)=75 | | 2x-5=3x-4+2x | | 8(2l+5=136 | | 3x+87=105 |