If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-6=57
We move all terms to the left:
7x^2-6-(57)=0
We add all the numbers together, and all the variables
7x^2-63=0
a = 7; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·7·(-63)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*7}=\frac{42}{14} =3 $
| r=250/2000 | | 5(3s+9)=75 | | 2x-5=3x-4+2x | | 8(2l+5=136 | | 3x+87=105 | | -16t2+144-144=0 | | 6x+19=4x+59 | | (A-9)x8=64 | | (Q-9)x8=64 | | (A-9x8=64 | | -2(-p+7)=-4 | | 1=7+r6 | | 168=6(3x+4) | | -3x+59x+3=23 | | 85=9+4x | | (U-9)x8=64 | | 0=-4.9x^2+13.1x+174.2 | | 10c+36-c=12 | | x^2+4x-392=0 | | 18-5g=48 | | -4=y–115 | | 42=3+y | | (Q-9)x5=50 | | n2-4=77 | | 41-2p=-43 | | 6x+23=13-5 | | 1800=3xx100 | | -42=r/8-44 | | -2b–1=5 | | m^2+14m+2=0 | | 3z/8=-13 | | -27=15+6u |