If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12y-5-4y^2=0
a = -4; b = -12; c = -5;
Δ = b2-4ac
Δ = -122-4·(-4)·(-5)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*-4}=\frac{4}{-8} =-1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*-4}=\frac{20}{-8} =-2+1/2 $
| 9+9p=45 | | 3x+14+x+10+2x-29+4x-25=180 | | 5x-9=20x | | t²+10t-100=0 | | 9m-4=m+5+12m | | 120-x+3x+4x-30+2x+30=180 | | 2(4x-1)=-40 | | 4^t=300 | | x-6/7=2x+5/5 | | (6-2x)^2-4x(6-2x)=0 | | 18-6x=-10 | | 25^3x+1=5^8x | | 2m-7=1m= | | (3x-8)²-(x+6)(3x-8)=0 | | 2x=x+63 | | -8x-3=-3x-6 | | 36=4×x | | -4(y+1)=-2y+2 | | 3(2x-6)=2(2x+1 | | 3(2x+1)=2(2x+6) | | .3(x-5)=2x+11 | | 8x*5=7x*10 | | x+2x+x+(-3)=-19 | | x+2x+3x+-5=1 | | 40=16+x | | 3x+(-2)=-11 | | 56=16+x | | 4x+(-4)=12 | | 8x×5=7x×10 | | X2+y2=45 | | X+22=x+2 | | x-16=56 |