-100=t(-15-4.905t)

Simple and best practice solution for -100=t(-15-4.905t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -100=t(-15-4.905t) equation:



-100=t(-15-4.905t)
We move all terms to the left:
-100-(t(-15-4.905t))=0
We add all the numbers together, and all the variables
-(t(-4.905t-15))-100=0
We calculate terms in parentheses: -(t(-4.905t-15)), so:
t(-4.905t-15)
We multiply parentheses
-4t^2-15t
Back to the equation:
-(-4t^2-15t)
We get rid of parentheses
4t^2+15t-100=0
a = 4; b = 15; c = -100;
Δ = b2-4ac
Δ = 152-4·4·(-100)
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{73}}{2*4}=\frac{-15-5\sqrt{73}}{8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{73}}{2*4}=\frac{-15+5\sqrt{73}}{8} $

See similar equations:

| -7(n+2)=-14–7n | | 3(4s+10)=42 | | n÷(-7);n=-21 | | 512x=38 | | 5y-3(7)=24 | | 7c-7=4c13c-10 | | (q-3)*2=4 | | 12x−4+1=−3−12x | | x+17x=130 | | x-6/5+x-4/3=8-x-2/7 | | 2x-4=12x-4 | | X+2x+4=127 | | 6(4x-9)-6=6(x-3)+48 | | 3x+60+3x=180 | | -5(1-5x)+5(-8x-)=-4x-8x | | -6=8-2p | | 2.5-0.03x=1.27 | | 2x(x+7)(2x-3)=0 | | 6+4k=5k+15 | | 3(x-4)+5=12 | | (3m×2)+(2m)=102 | | 9y+.16=13y | | 19-2.5c=34 | | 7x-4+3x=2(4x-4) | | 25=-7(x+5)+5*x | | 24x+132=3x+42 | | 7x-4=1/3(-12+9x) | | 4t+25=-3t+38 | | 3x-4=1/4(12+9x) | | 4t+25=-3+38 | | 4(2x-2)=8x+7 | | 2/3(12x-6)=24 |

Equations solver categories