-10+1/5k=k+2

Simple and best practice solution for -10+1/5k=k+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -10+1/5k=k+2 equation:



-10+1/5k=k+2
We move all terms to the left:
-10+1/5k-(k+2)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
We get rid of parentheses
1/5k-k-2-10=0
We multiply all the terms by the denominator
-k*5k-2*5k-10*5k+1=0
Wy multiply elements
-5k^2-10k-50k+1=0
We add all the numbers together, and all the variables
-5k^2-60k+1=0
a = -5; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·(-5)·1
Δ = 3620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3620}=\sqrt{4*905}=\sqrt{4}*\sqrt{905}=2\sqrt{905}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{905}}{2*-5}=\frac{60-2\sqrt{905}}{-10} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{905}}{2*-5}=\frac{60+2\sqrt{905}}{-10} $

See similar equations:

| 7-4p÷3=8 | | 3(4k+14)=10k-2(k-7 | | H=16t^2+121 | | 9-b=13 | | 0.6x+0.85=119 | | 98=4h+84 | | w/5-12=1 | | -127-12x=73-4x | | 3x-7x+17x=-8-3 | | 0.75x0.16=0.12 | | 2w+14=38 | | 5(3x-1)=5x+66 | | -x-6=5/9x+8 | | n(.2)=135 | | 90.4=13.5w+63.4 | | b+3/2=15 | | 4w-9(6-5w)=44w=3 | | 0.5x-0.7x-1=15 | | 360=2/3p | | 3x^2+14x=1479 | | 63=13+5w | | 13+5w=60 | | 11w-4=-15 | | 4x^2-4x-168/2x+12=20 | | b^2-12b-82=0 | | 3(4x-5)+22-4x=43 | | |6-x|=5 | | -x-4=7/3x+6 | | 2z/z-2+3/z-4=1 | | 17x-7=15x+3 | | 2/3*3/2x=189/20*2/3 | | 2x^+24=-29 |

Equations solver categories