-1/6d+2=7d+45

Simple and best practice solution for -1/6d+2=7d+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/6d+2=7d+45 equation:



-1/6d+2=7d+45
We move all terms to the left:
-1/6d+2-(7d+45)=0
Domain of the equation: 6d!=0
d!=0/6
d!=0
d∈R
We get rid of parentheses
-1/6d-7d-45+2=0
We multiply all the terms by the denominator
-7d*6d-45*6d+2*6d-1=0
Wy multiply elements
-42d^2-270d+12d-1=0
We add all the numbers together, and all the variables
-42d^2-258d-1=0
a = -42; b = -258; c = -1;
Δ = b2-4ac
Δ = -2582-4·(-42)·(-1)
Δ = 66396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66396}=\sqrt{4*16599}=\sqrt{4}*\sqrt{16599}=2\sqrt{16599}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-258)-2\sqrt{16599}}{2*-42}=\frac{258-2\sqrt{16599}}{-84} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-258)+2\sqrt{16599}}{2*-42}=\frac{258+2\sqrt{16599}}{-84} $

See similar equations:

| 3(c+4)-11=28 | | 5b+13=11-4 | | 18=40-4x | | 2x-17=53 | | 2a+4/11=6 | | 4m-8=-48 | | X/4-16=4-x | | x+25+(x+10)=2x | | 7x-10=4x=5 | | 6x+4=4((3/2)x+1) | | 5(5-2)-2=2(y+1)-5 | | 21x-4=56 | | 1.5x=1125 | | 86+x+x+90=180 | | 4x-52x+1)=0x+(-5) | | 6x/20+8x-10=180 | | -2y+y=-10+6 | | n=6n+7 | | h^2+43h=0 | | -7/8=x-4 | | -2(y+7)=-4(5y-1)+8y | | -3(-5u+9)-u=2(u-4)-3 | | -6(x+9)=4x+26 | | 4w-40=8(w-9) | | (14x+80)=(4x+82 | | 5(y-2)=9y+18 | | 7x+4=-3(x-8) | | -7(y-9)=5y+27 | | 0=49-9.8*t | | (7n-3)=37 | | (2x+7)=(x-4) | | (8x+4)=(9x-9) |

Equations solver categories