-1/4x=-20x

Simple and best practice solution for -1/4x=-20x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4x=-20x equation:



-1/4x=-20x
We move all terms to the left:
-1/4x-(-20x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
-1/4x+20x=0
We multiply all the terms by the denominator
20x*4x-1=0
Wy multiply elements
80x^2-1=0
a = 80; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·80·(-1)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*80}=\frac{0-8\sqrt{5}}{160} =-\frac{8\sqrt{5}}{160} =-\frac{\sqrt{5}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*80}=\frac{0+8\sqrt{5}}{160} =\frac{8\sqrt{5}}{160} =\frac{\sqrt{5}}{20} $

See similar equations:

| 65x+25=180 | | 10(t+1)=25t | | 9x+10=-3x-14 | | 4+9x=32+5x | | 16-3y=67 | | x+65x+25=180 | | 6x+67=24 | | 6(6-7p)+2=-36-5p | | 8^2x1=4^1-x | | 6x-4+3x+15=8-4x+9-6x | | (2h+7)-(h+6+3h=9 | | x+17=-42 | | h+5/6=2 | | 9d-76=94 | | -18+t-4=3t+18 | | 4(4+4x=-4+6x | | (3x)-6=24 | | C=-3yy=4 | | v-7=7= | | 7(4x+1)−3x=5x−13 | | 14+6.2n=12+6.4n | | 1/3x-4/3=1/6x-1 | | 9m-4=-3m | | F(x)=-2(3x+4)+30 | | H(t)=-3t^2+13t+10 | | -16+7(2a-3)=23-2a | | 3x-1=x5 | | 3b-19+14b=13+13b | | 1/2=1/3+x | | -30+48=-9j | | 6j-2j-4=20 | | 3(x+2)-4x=12+2x |

Equations solver categories