-1/4-4+3/4x=1/2x+1

Simple and best practice solution for -1/4-4+3/4x=1/2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4-4+3/4x=1/2x+1 equation:



-1/4-4+3/4x=1/2x+1
We move all terms to the left:
-1/4-4+3/4x-(1/2x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x+1)!=0
x∈R
We get rid of parentheses
3/4x-1/2x-1-4-1/4=0
We calculate fractions
6x/128x^2+(-64x)/128x^2+(-2x)/128x^2-1-4=0
We add all the numbers together, and all the variables
6x/128x^2+(-64x)/128x^2+(-2x)/128x^2-5=0
We multiply all the terms by the denominator
6x+(-64x)+(-2x)-5*128x^2=0
Wy multiply elements
-640x^2+6x+(-64x)+(-2x)=0
We get rid of parentheses
-640x^2+6x-64x-2x=0
We add all the numbers together, and all the variables
-640x^2-60x=0
a = -640; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·(-640)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*-640}=\frac{0}{-1280} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*-640}=\frac{120}{-1280} =-3/32 $

See similar equations:

| (2x+3)^2=49 | | 28-y=7 | | 6(6x-2)=2x-3(1-5x) | | A(4)=3.14r | | -2(x-4)^2-3=77 | | 13=-6.6+x | | (3x-1)^2+2=83 | | 6x2=-8 | | 5(x+2)+4=8x-1-3(x-5) | | -3x^2+8=68 | | x/3=5+x/5-35/5 | | 2g-1g+8=23 | | 2x^2-5=95 | | 20(x-2)=17(x+1)-18 | | x+5+3=5+5 | | 96=z+16 | | 6(x-9)-3x=5(x-2)-2 | | 5/8g=-10 | | 2/3(3x-6)+1=5 | | 2(5c+2)-2c=6c+9)+7 | | 20=-20+9.8t | | h−15=83 | | 3(4x+2)=24-6x | | 36+6x=2x | | x+x9=2,000 | | 3(x+1)+2x+4=1+3x | | n={6,9,7} | | x+x9=2000 | | n=(6,9,7) | | 4x+4=2x-2x-4 | | n=6,9,7 | | 16-(3m+3)=5+4m-13 |

Equations solver categories