-(x+16)(x+4)=x(x+11+16)-

Simple and best practice solution for -(x+16)(x+4)=x(x+11+16)- equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(x+16)(x+4)=x(x+11+16)- equation:



-(x+16)(x+4)=x(x+11+16)-
We move all terms to the left:
-(x+16)(x+4)-(x(x+11+16)-)=0
We add all the numbers together, and all the variables
-(x+16)(x+4)-(x(x+27)-)=0
We multiply parentheses ..
-(+x^2+4x+16x+64)-(x(x+27)-)=0
We calculate terms in parentheses: -(x(x+27)-), so:
x(x+27)-
We add all the numbers together, and all the variables
x(x+27)
We multiply parentheses
x^2+27x
Back to the equation:
-(x^2+27x)
We get rid of parentheses
-x^2-x^2-4x-16x-27x-64=0
We add all the numbers together, and all the variables
-2x^2-47x-64=0
a = -2; b = -47; c = -64;
Δ = b2-4ac
Δ = -472-4·(-2)·(-64)
Δ = 1697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-\sqrt{1697}}{2*-2}=\frac{47-\sqrt{1697}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+\sqrt{1697}}{2*-2}=\frac{47+\sqrt{1697}}{-4} $

See similar equations:

| 3x^2+14x=1 | | .0675x=5.14 | | 3(w+3)+6w=-9 | | -5y+7(y-3)=-35 | | 5(x+3)-7x=5 | | 18-7y=-3 | | x-4/5=22/5 | | X^2-2x-182=0 | | 4^x^2-21=16^2x | | 100^6x-7=10x^2+10x-62 | | 129=(n-2)*180/n | | 1=1.5*x | | 3w+45=50 | | X-6-9x=10x+3 | | X-6+9x=10x-6 | | 34=1.06x | | 5x=144-7x | | X-6-9x=10x-6 | | 0.10=0.50f | | 7w-8=97 | | 25+8=x/50=5 | | 75-2x=20 | | 2x-75=20 | | 5/2x-3=3/2 | | 6-x=(5+x)-4 | | 2/3x+1/2x=3/4 | | 49=17+3x | | 3/2x+1/2x=3/4 | | 3(4-2w)=5 | | 62+x=40/100 | | 16+3y-y2=2 | | 3x−15+5x−23=90 |

Equations solver categories