If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(5/6)x-(1/9)=-102
We move all terms to the left:
-(5/6)x-(1/9)-(-102)=0
Domain of the equation: 6)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(+5/6)x-(+1/9)-(-102)=0
We add all the numbers together, and all the variables
-(+5/6)x+102-(+1/9)=0
We multiply parentheses
-5x^2+102-(+1/9)=0
We get rid of parentheses
-5x^2+102-1/9=0
We multiply all the terms by the denominator
-5x^2*9-1+102*9=0
We add all the numbers together, and all the variables
-5x^2*9+917=0
Wy multiply elements
-45x^2+917=0
a = -45; b = 0; c = +917;
Δ = b2-4ac
Δ = 02-4·(-45)·917
Δ = 165060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{165060}=\sqrt{36*4585}=\sqrt{36}*\sqrt{4585}=6\sqrt{4585}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{4585}}{2*-45}=\frac{0-6\sqrt{4585}}{-90} =-\frac{6\sqrt{4585}}{-90} =-\frac{\sqrt{4585}}{-15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{4585}}{2*-45}=\frac{0+6\sqrt{4585}}{-90} =\frac{6\sqrt{4585}}{-90} =\frac{\sqrt{4585}}{-15} $
| 0.3x=135 | | 4y=6y−10 | | -3q^2-q^2=0 | | -f+9=2f | | -.3+r=4.7 | | 10n=9n+4 | | 10x+1=-10-x | | -2(6n-2)=39-5n | | 6m^2-24m=30 | | 7(y+1)+2=3(2y-1) | | U=3x-2 | | -x/2+9-6=6 | | 2(3x+6)=10x+2-4x+10 | | 1000(1+0.06)^(5*4)=x | | 3(-3)-7y=11 | | −33=−11+x | | 5(m-1)=4m | | 8.3+6.64+x=201.15 | | 1000(1+0.06(^(5*4)=x | | 2x+10x+6=10 | | 3(x+8)/3=0 | | 7x+3x-1=2(5x+1) | | -11+10p+11=4-10p-55 | | 7p=3(4+p) | | .8(x+600)=2000 | | -1/3=5/6+x | | 2x-5+7=x+8 | | 12x+12=7x-7 | | 5w+9=24 | | -5x=40x= | | 42=6x+20 | | 11x-4=84. |