(y-62)=2/3y

Simple and best practice solution for (y-62)=2/3y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y-62)=2/3y equation:



(y-62)=2/3y
We move all terms to the left:
(y-62)-(2/3y)=0
Domain of the equation: 3y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(y-62)-(+2/3y)=0
We get rid of parentheses
y-2/3y-62=0
We multiply all the terms by the denominator
y*3y-62*3y-2=0
Wy multiply elements
3y^2-186y-2=0
a = 3; b = -186; c = -2;
Δ = b2-4ac
Δ = -1862-4·3·(-2)
Δ = 34620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34620}=\sqrt{4*8655}=\sqrt{4}*\sqrt{8655}=2\sqrt{8655}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-186)-2\sqrt{8655}}{2*3}=\frac{186-2\sqrt{8655}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-186)+2\sqrt{8655}}{2*3}=\frac{186+2\sqrt{8655}}{6} $

See similar equations:

| 3x-30=8x-10=180 | | 5x14x=10.25 | | m-4=m=17 | | 1.4-1.3y=3.64 | | 56=17u-9u | | -11-7x+8x=23 | | 6-2y=8+4y | | -u/7=29 | | 7x-30=2x+25 | | 3x^2+x=35 | | -5x-1=-6x+6 | | 6x-7=4x=5 | | 0.08(y-6)+0.10y=0.04y-0.9 | | 11x+26=3x-30 | | 13.05=g/2-(-8.94) | | 10x-20=4x+22 | | 3(y+6)-6y=-9 | | -3x=x4 | | 2u+5(u-2)=18 | | -(j+2)=3 | | -3(-8u+8)-4u=4(u-2)-4 | | 11.55=b/3+9.6 | | 1.618=12/x | | 2(w-1)=-9w+31 | | 2(x-1)^2+10=82 | | 3(2x+1)-x=2(x+1)-2 | | 1.2x+16=4.8-2 | | 3y-4=53 | | (1)(4)x-5=x-14 | | 35x+612=912 | | 8x-12=1x-8 | | 8x-12=x-8 |

Equations solver categories