If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y+2)(y-3)=(y-4)(y-2)+(y-4)(y+2)
We move all terms to the left:
(y+2)(y-3)-((y-4)(y-2)+(y-4)(y+2))=0
We multiply parentheses ..
(+y^2-3y+2y-6)-((y-4)(y-2)+(y-4)(y+2))=0
We calculate terms in parentheses: -((y-4)(y-2)+(y-4)(y+2)), so:We get rid of parentheses
(y-4)(y-2)+(y-4)(y+2)
We multiply parentheses ..
(+y^2-2y-4y+8)+(y-4)(y+2)
We get rid of parentheses
y^2-2y-4y+(y-4)(y+2)+8
We multiply parentheses ..
y^2+(+y^2+2y-4y-8)-2y-4y+8
We add all the numbers together, and all the variables
y^2+(+y^2+2y-4y-8)-6y+8
We get rid of parentheses
y^2+y^2+2y-4y-6y-8+8
We add all the numbers together, and all the variables
2y^2-8y
Back to the equation:
-(2y^2-8y)
y^2-2y^2-3y+2y+8y-6=0
We add all the numbers together, and all the variables
-1y^2+7y-6=0
a = -1; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·(-1)·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*-1}=\frac{-12}{-2} =+6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*-1}=\frac{-2}{-2} =1 $
| 4(y+1)=12y | | (5+d)÷-2=14 | | 0=y^2-7y+6 | | -9-n=-9-6n | | -3(x-6)=8-2x | | 5k^2+2=12k | | 19=2-13k | | 8(8+7x-2x=5(4x+6) | | 5x-7=50x+29 | | 2x^2-119=3x | | -36x^2+48x-12=0 | | 4c+8c=40 | | 2-3(4-x)=2x+5 | | 7x^2+21x+252=0 | | 5x-4=x+9 | | 8^x=1024 | | y-(-6)=-2 | | -3+2x=65 | | 3x2-18x+6=0 | | 3x2-12x=0 | | -3(n–11)=-9 | | X^2+2x-0.2=0 | | 2=d4–2 | | 8+7r=7+6r | | -12=-3t+6 | | x=2+2x4-6 | | 2^(5x+2)=6^(x) | | X^=6y | | 2(x-3)=x-7 | | 4.67y+2=14 | | 10-r=9r | | 4x(2x+3)=6x+94x(2x+3)=6x+9. |