(x2+3)2=4x2=12

Simple and best practice solution for (x2+3)2=4x2=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+3)2=4x2=12 equation:



(x2+3)2=4x^2=12
We move all terms to the left:
(x2+3)2-(4x^2)=0
determiningTheFunctionDomain -4x^2+(x2+3)2=0
We add all the numbers together, and all the variables
-4x^2+(+x^2+3)2=0
We multiply parentheses
-4x^2+2x^2+6=0
We add all the numbers together, and all the variables
-2x^2+6=0
a = -2; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-2)·6
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-2}=\frac{0-4\sqrt{3}}{-4} =-\frac{4\sqrt{3}}{-4} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-2}=\frac{0+4\sqrt{3}}{-4} =\frac{4\sqrt{3}}{-4} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 6p-4/8=21/2 | | x^2-6x+9.5=0 | | -53=-y/7 | | =1-9x+22 | | -u/3=50 | | -15=-0.6k | | 12−4x=−8 | | 4z-10+10-5z+6z-5=260 | | 8x=8x+26 | | 3(x+2)=30+x-2-12+2 | | x+2/3=6/9 | | 7x-2x+18=63 | | 12x+120=360 | | 2(7)-y=15 | | 4z-10+10-5z+6z-5=180 | | 3x(x+6)+10=0 | | 6x/2-7(x-4)=8(-3x) | | 7x+2x+18=63 | | –11=15–6t | | 2x(x+1.5)+1=0 | | X+3/4=2x-1 | | 7y-5=-47 | | 23z+9=82z+1. | | h+12.7=−12.7 | | 3x+26.4=2.6 | | x+5+5x=25 | | (3x-2)=(2x+30)° | | 8^(2x)=16 | | 3n−10=2nn= | | -3=y=-5 | | 7x+4x=88 | | 78/8=8x/8 |

Equations solver categories