If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+6)+10=0
We multiply parentheses
3x^2+18x+10=0
a = 3; b = 18; c = +10;
Δ = b2-4ac
Δ = 182-4·3·10
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{51}}{2*3}=\frac{-18-2\sqrt{51}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{51}}{2*3}=\frac{-18+2\sqrt{51}}{6} $
| 6x/2-7(x-4)=8(-3x) | | 7x+2x+18=63 | | –11=15–6t | | 2x(x+1.5)+1=0 | | X+3/4=2x-1 | | 7y-5=-47 | | 23z+9=82z+1. | | h+12.7=−12.7 | | 3x+26.4=2.6 | | x+5+5x=25 | | (3x-2)=(2x+30)° | | 8^(2x)=16 | | 3n−10=2nn= | | -3=y=-5 | | 7x+4x=88 | | 78/8=8x/8 | | 13y+74=360 | | (4x-18)=(3x-8)° | | $(d-9)-(3d-1)=$ | | 5(x+6)-22=53 | | 26c-4=360 | | 13y-8=12+3 | | a=3.14(576)(30) | | 8w+32=360 | | 43u-9=34u | | (2x+5)=(8x+ | | 9w=8+5w | | -13+17a=344 | | (6x+10)°=(5x+28)° | | 3x-7=2x/6+1 | | 49c+66=360 | | x2+18x=115 |