(x/2)+(x/5)=(5/2)

Simple and best practice solution for (x/2)+(x/5)=(5/2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/2)+(x/5)=(5/2) equation:



(x/2)+(x/5)=(5/2)
We move all terms to the left:
(x/2)+(x/5)-((5/2))=0
We add all the numbers together, and all the variables
(+x/2)+(+x/5)-((+5/2))=0
We get rid of parentheses
x/2+x/5-((+5/2))=0
We calculate fractions
8x^2/()+5x/()+()/()=0
We add all the numbers together, and all the variables
8x^2/()+5x/()+1=0
We multiply all the terms by the denominator
8x^2+5x+1*()=0
We add all the numbers together, and all the variables
8x^2+5x=0
a = 8; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·8·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*8}=\frac{-10}{16} =-5/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*8}=\frac{0}{16} =0 $

See similar equations:

| 2r-2r+3r+2r+2r=7 | | 5(2x-7)=3(3x+4)+15 | | 3y=15* | | y=0.125-0.6 | | 7x+2=7x+16 | | 5x+12+4x+3+2x+6=180 | | 19=u+5 | | 40=3/4x+10 | | 3x+5+x=9x+5+-5x | | p/9-10=-12 | | 2/3x+1=4/3x-5 | | -m÷5-5=1 | | .6+3x=x-8 | | -4-8p=9p-12 | | 5x+2=17 | | r+12=45 | | 16k-5k-9k=8 | | 4(x-5)=-40 | | 4x+4-x=110 | | 5p=5-4+4p | | -3z=-1+2(-2z+9) | | 6+3(x-1)=3x+14 | | -20x+48=135 | | 1/5(x+20)=8 | | 2u-4+5=17 | | 8x-6x+14=12 | | 4x+0=6x+9 | | x+10+30+90=180 | | 8b-3=3b+12 | | -2x+4+x=-x^2 | | -6x-45-10-x=35 | | 7x+2=7x+16=4x+13 |

Equations solver categories