(x-8)(2x+10)=(x+2)(x-1)

Simple and best practice solution for (x-8)(2x+10)=(x+2)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-8)(2x+10)=(x+2)(x-1) equation:



(x-8)(2x+10)=(x+2)(x-1)
We move all terms to the left:
(x-8)(2x+10)-((x+2)(x-1))=0
We multiply parentheses ..
(+2x^2+10x-16x-80)-((x+2)(x-1))=0
We calculate terms in parentheses: -((x+2)(x-1)), so:
(x+2)(x-1)
We multiply parentheses ..
(+x^2-1x+2x-2)
We get rid of parentheses
x^2-1x+2x-2
We add all the numbers together, and all the variables
x^2+x-2
Back to the equation:
-(x^2+x-2)
We get rid of parentheses
2x^2-x^2+10x-16x-x-80+2=0
We add all the numbers together, and all the variables
x^2-7x-78=0
a = 1; b = -7; c = -78;
Δ = b2-4ac
Δ = -72-4·1·(-78)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-19}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+19}{2*1}=\frac{26}{2} =13 $

See similar equations:

| (5c+3)=(3c-8) | | -8+x=x-3/8 | | 3y=5y-(8/5) | | 3z+4=7-2z | | 7y+7y=0 | | 9-2(p-5)=p+10 | | 2(a-1)-6a=10-2(a-4) | | 2y+4=10-y | | 18x=333 | | x+x^-9=0 | | 1+-9x^-10=0 | | -2(3x-7)+9=-6x+23 | | (2x+3)^2-48=0 | | 5x+6=5(x-4) | | .2y=1.54 | | 4a+3=6+2a | | ((2x+3)^2)-6=42 | | .2x+.25(70)=23.5 | | 10x=(x+3)(10-2) | | 4/5+x+6/5=-6/5 | | 20a-1=3.5a-3 | | x/8=3/11 | | 1/2x60-1.50x=32 | | (t+1)/2=(2t-3)/6 | | 5-r=8 | | 0.5(4x-11)=-19 | | 13=158-w | | 108-y=254 | | 0.5(4x-11)=19 | | 18=177-y | | 4n+12=80 | | -u+234=152 |

Equations solver categories