(x-7)(2/3)=25

Simple and best practice solution for (x-7)(2/3)=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-7)(2/3)=25 equation:



(x-7)(2/3)=25
We move all terms to the left:
(x-7)(2/3)-(25)=0
We add all the numbers together, and all the variables
(x-7)(+2/3)-25=0
We multiply parentheses ..
(+2x^2-7*2/3)-25=0
We multiply all the terms by the denominator
(+2x^2-7*2-25*3)=0
We get rid of parentheses
2x^2-7*2-25*3=0
We add all the numbers together, and all the variables
2x^2-89=0
a = 2; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·2·(-89)
Δ = 712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{712}=\sqrt{4*178}=\sqrt{4}*\sqrt{178}=2\sqrt{178}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{178}}{2*2}=\frac{0-2\sqrt{178}}{4} =-\frac{2\sqrt{178}}{4} =-\frac{\sqrt{178}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{178}}{2*2}=\frac{0+2\sqrt{178}}{4} =\frac{2\sqrt{178}}{4} =\frac{\sqrt{178}}{2} $

See similar equations:

| -7-9-4f=-9f+9 | | -0.1f-7.74=9.4f-3.06-8.2f | | 2.76+2.4g=1.32+9.6g | | 10b-7=-7+2b | | 10-8h=-4-3h-3h | | 4-n=n-2-n | | -3+8v=9v+7 | | F(-4)=5-x | | -9(n/3)=-30 | | 40x70=370 | | -9|n/3|=-30 | | -0.5=6-2/3x | | F(2)=x2-9+5 | | 130=7x+1 | | 7x+1=130° | | 12-1/2x=9 | | F(0)=3x-19 | | 12x=143 | | F(-6)=14-5x | | 5a-10=10(1/4a+12) | | (6b+5)(b-1)=-3 | | -2-x/7=5 | | X=23-y | | 2x^2+13+6=90 | | 3x²+5x=6 | | s+10=2313 | | r3=14 | | 6/x=720 | | 60°=14x+4 | | 60°=(14x+4) | | 12/2x+1=x+6/7.5 | | 31≤3x+10=463x+10 |

Equations solver categories