If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-5)(x+4)=112
We move all terms to the left:
(x-5)(x+4)-(112)=0
We multiply parentheses ..
(+x^2+4x-5x-20)-112=0
We get rid of parentheses
x^2+4x-5x-20-112=0
We add all the numbers together, and all the variables
x^2-1x-132=0
a = 1; b = -1; c = -132;
Δ = b2-4ac
Δ = -12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-23}{2*1}=\frac{-22}{2} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+23}{2*1}=\frac{24}{2} =12 $
| -2—5s=(4-s) | | x*(x+1)+75=887 | | 9x+7=8(x-3) | | x*(x+1)+75=1197 | | x*(x+1)=12 | | (x+2)(x-1)+(x+2)(x-3)=0 | | X+(3x)-20=28 | | 3x(x-4)=3x^2-5 | | 2(x+30=2x-6 | | 2(x+3=2x-6 | | 7x+1=282x | | 13x+11=8x+36 | | 15-1=9x+11 | | 9-7x=4x+3 | | X^3+12x^2-2=0 | | 3(6y-3)=12y | | (3x+1)^2=(2x-5)^2 | | 11/x=11/12 | | n(n-1)/2=120 | | -70+13/6=2p-1 | | n(n^2-3n+2)(n^2-7n+12)=120 | | n(n-1)(n-2)(n-3)(n-4)+960=1080 | | X*(x+10)=44 | | 10+2x=3x+7 | | 2n-7=4 | | 7/5x+5-3/10x+10=11/120 | | r=3(5r-8) | | 7x^2-90x-112=0 | | (x^2-4)^2=8*x+1 | | -8x+(x^2-4)^2=1 | | (x^2-4)^2=8x+1 | | 5x+3=-197 |