(x-5)(3x-3)=3(x-9)+6x

Simple and best practice solution for (x-5)(3x-3)=3(x-9)+6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)(3x-3)=3(x-9)+6x equation:



(x-5)(3x-3)=3(x-9)+6x
We move all terms to the left:
(x-5)(3x-3)-(3(x-9)+6x)=0
We multiply parentheses ..
(+3x^2-3x-15x+15)-(3(x-9)+6x)=0
We calculate terms in parentheses: -(3(x-9)+6x), so:
3(x-9)+6x
We add all the numbers together, and all the variables
6x+3(x-9)
We multiply parentheses
6x+3x-27
We add all the numbers together, and all the variables
9x-27
Back to the equation:
-(9x-27)
We get rid of parentheses
3x^2-3x-15x-9x+15+27=0
We add all the numbers together, and all the variables
3x^2-27x+42=0
a = 3; b = -27; c = +42;
Δ = b2-4ac
Δ = -272-4·3·42
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-15}{2*3}=\frac{12}{6} =2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+15}{2*3}=\frac{42}{6} =7 $

See similar equations:

| -1/5(d-1)=8 | | 13x=-31 | | -6m^2-7m+4=0 | | 8=3a | | 4(2x+5)=48 | | 36-9b=54 | | (x+2)(2x+7)=4x+10x+2 | | 3(2x+1)+2(4x+1)=35 | | 25y+8=17 | | (x+2)(2x+7)=2x*2x+10x+2 | | 18=-4x+6 | | 35=-5(2x-3) | | ⅘w=8 | | 2(-2x+3)-(4x+9)=21 | | 2+b=18 | | 2a*(a+3)+5a+5=(a+5)*(2a+1) | | 12*(a-1)=4a-12+8a | | 1.6(10.8r-1.1)=80.8 | | 4x+7-5x-2=-3×+x | | 360=x+x+(30+x)+(30-x) | | 0.5(–6x+12)=x | | 3x+32=6×-12 | | 4y-28=3y-14 | | 11-2x=5-3x | | w+2/5=41/4 | | 2*2x-5x-13=70 | | 35=5(2x-8) | | 5x+20-5=15 | | -10x+10=3x+6 | | 20/7.65=20/x | | n/6=4(-2) | | 12x+5+8x+51=3x+99+7x-83 |

Equations solver categories