If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-4)(x)=96
We move all terms to the left:
(x-4)(x)-(96)=0
We multiply parentheses
x^2-4x-96=0
a = 1; b = -4; c = -96;
Δ = b2-4ac
Δ = -42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-20}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+20}{2*1}=\frac{24}{2} =12 $
| 8g^2-22g+5=0 | | Y^2=-12y-35 | | 4z(9z-4)=0 | | -5k(k-6)=0 | | 2x-14=14-x | | 2(1+x)=3+x | | Y+8=23-2x | | 5x+1=2x-6 | | 2.7^x=4 | | (8h-5)(h-2)=0 | | 5x+5=2x-6 | | u(7u-9)=0 | | (d+3)(d+6)=0 | | x+5/7=5 | | -1=n÷5+1 | | (g-6)(g-5)=0 | | 30y^2-5y-10=0 | | 63y^2-29=-1 | | -1=n/5+1 | | p^2+10=26 | | 36n^2=16 | | −5+8x=−15 | | j^2+99=99 | | 6^(8x−3)=50 | | X+2+9x-32=180 | | 2981.1+r=6378.1 | | q+(-5)=8/3 | | 3(x-4)2+7=34 | | 60n=37° | | -5x+30-25=0 | | 3(-4x+1)=8x+4(-x+2) | | 5.50x+625=6x |