(x-35)+(x-25)+(1/2x-10)=180

Simple and best practice solution for (x-35)+(x-25)+(1/2x-10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-35)+(x-25)+(1/2x-10)=180 equation:



(x-35)+(x-25)+(1/2x-10)=180
We move all terms to the left:
(x-35)+(x-25)+(1/2x-10)-(180)=0
Domain of the equation: 2x-10)!=0
x∈R
We get rid of parentheses
x+x+1/2x-35-25-10-180=0
We multiply all the terms by the denominator
x*2x+x*2x-35*2x-25*2x-10*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2-70x-50x-20x-360x+1=0
We add all the numbers together, and all the variables
4x^2-500x+1=0
a = 4; b = -500; c = +1;
Δ = b2-4ac
Δ = -5002-4·4·1
Δ = 249984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{249984}=\sqrt{576*434}=\sqrt{576}*\sqrt{434}=24\sqrt{434}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500)-24\sqrt{434}}{2*4}=\frac{500-24\sqrt{434}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500)+24\sqrt{434}}{2*4}=\frac{500+24\sqrt{434}}{8} $

See similar equations:

| 2(b+12(=16 | | n+1=4n-32 | | 3(4x+1)-5(2x+3)=-2 | | b+b+b+b=56 | | 2(x+3)-5(x-3)=24 | | 20=2x*25 | | 20=2xx25 | | 8(x-3)+6(x+4)=14 | | 12(x+5)=84 | | -x^2+6x+28=0 | | 132÷x=12 | | 6x+4*3=12 | | 3x2-27x+48=0 | | 2/x+3/5x=13/10 | | 8/3x+4=16 | | 0.3=15/30+x | | 2n=12/9 | | 5x²+26x+5=0 | | 3x+8=-5x-32 | | 14x/9=12 | | 13=2v+5 | | 17-5k=7 | | 0.4=x/30+x | | 6r-8=7 | | 8p+12=36 | | 2(3-2x)=-5+7 | | 7.8=0.8x | | 6(-2z+3)=3(3z+6) | | 26=5x. | | 7p-4=46 | | 1.4a=2 | | 8m-68=60 |

Equations solver categories