(x-3)/2x=(2x-10)/2x

Simple and best practice solution for (x-3)/2x=(2x-10)/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)/2x=(2x-10)/2x equation:



(x-3)/2x=(2x-10)/2x
We move all terms to the left:
(x-3)/2x-((2x-10)/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We calculate fractions
(x-3)*2x)/4x^2+(-((2x-10)*2x)/4x^2=0
We calculate fractions
((x-3)*2x)*4x^2)/(4x^2+(*4x^2)+(-((2x-10)*2x)*4x^2)/(4x^2+(*4x^2)=0
We calculate terms in parentheses: +(-((2x-10)*2x)*4x^2)/(4x^2+(*4x^2), so:
-((2x-10)*2x)*4x^2)/(4x^2+(*4x^2
We multiply all the terms by the denominator
-((2x-10)*2x)*4x^2)+((*4x^2)*(4x^2
Back to the equation:
+(-((2x-10)*2x)*4x^2)+((*4x^2)*(4x^2)
We get rid of parentheses
((x-3)*2x)*4x^2)/(4x^2+*4x^2+(-((2x-10)*2x)*4x^2)+((*4x^2)*4x^2=0
We multiply all the terms by the denominator
((x-3)*2x)*4x^2)+(*4x^2)*(4x^2+((-((2x-10)*2x)*4x^2))*(4x^2+(((*4x^2)*4x^2)*(4x^2=0

See similar equations:

| 7y+6=5(y+6) | | 19×x/(-1)=38 | | 4×x×(-1)=28 | | -75/x=25 | | 2x-21÷28-5x=-36÷41 | | 2x-21/28-5x=-36/41 | | x+x+96=96 | | -5+2=+3x/14 | | 21-6x=5x+32 | | x−4.5=9 | | 5n+8=7-4 | | 5(z+4)=-2(3-z) | | 2/4=6/p | | 6/5x=-8 | | 6/9=x/8 | | 3/x=(5x÷5+x)^2/3 | | 3=8+1/3x-6+1/3 | | 35x+52=647 | | -5(4t-5)+9t=8t-2 | | (−y−9)(5y−10)=0 | | .​​2x+3=-15 | | x+x-6+2(x-6)=42 | | 5(-8-3b)=160 | | (5m-3)/63=9/21 | | 16(y-9)+20y=12y-270 | | 3(3x+2)=15x | | t=7=64=9t | | 1x^2+12x-48=0 | | 16(y-9)+20y=12y-2.7 | | (x-1)^2=2x^2-7x+7 | | 2/3x=9-2(1/3x+3) | | x=52x-1= |

Equations solver categories