(x-3)(5x-1)=x2-6x+9

Simple and best practice solution for (x-3)(5x-1)=x2-6x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(5x-1)=x2-6x+9 equation:



(x-3)(5x-1)=x2-6x+9
We move all terms to the left:
(x-3)(5x-1)-(x2-6x+9)=0
We add all the numbers together, and all the variables
-(+x^2-6x+9)+(x-3)(5x-1)=0
We get rid of parentheses
-x^2+6x+(x-3)(5x-1)-9=0
We multiply parentheses ..
-x^2+(+5x^2-1x-15x+3)+6x-9=0
We add all the numbers together, and all the variables
-1x^2+(+5x^2-1x-15x+3)+6x-9=0
We get rid of parentheses
-1x^2+5x^2-1x-15x+6x+3-9=0
We add all the numbers together, and all the variables
4x^2-10x-6=0
a = 4; b = -10; c = -6;
Δ = b2-4ac
Δ = -102-4·4·(-6)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*4}=\frac{-4}{8} =-1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*4}=\frac{24}{8} =3 $

See similar equations:

| (x-3)(x-2)=(2x-1)(x-3) | | 2x2-17x=0 | | 3x2-675=0 | | 68x+7=7 | | 22x+64=180 | | X^2-2x=109 | | (2x^2+3x)^2-7(2x^2+3x)=-10 | | 3x+5+8+9=113 | | 12a+6+90=180 | | 7t+2=180 | | 14e+6+90=180 | | 500+8m=98 | | (x)(x+3)=66 | | -4x-8=-(5x-3 | | 3x+3=8x-332 | | 6p+15=19+4p | | 8-3y=-35 | | 157+102+x=180 | | 61+6x+10+43=180 | | 103+3x-12+47=180 | | 2(9x-3)-3x+5=9 | | 200+30x=10x+4.5000 | | 23-2c=4c-15 | | 23-2c=4c-14 | | -2.15+1.8x=12.7+4.8x | | -v/9=-45 | | -19+g=25 | | 5=20w | | 4x+3+4x-11+76=180 | | 2x-10+43+109=180 | | -4/3=-5/2x+7/4 | | 25n+10=510 |

Equations solver categories