(x-3)(x-2)=(2x-1)(x-3)

Simple and best practice solution for (x-3)(x-2)=(2x-1)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(x-2)=(2x-1)(x-3) equation:



(x-3)(x-2)=(2x-1)(x-3)
We move all terms to the left:
(x-3)(x-2)-((2x-1)(x-3))=0
We multiply parentheses ..
(+x^2-2x-3x+6)-((2x-1)(x-3))=0
We calculate terms in parentheses: -((2x-1)(x-3)), so:
(2x-1)(x-3)
We multiply parentheses ..
(+2x^2-6x-1x+3)
We get rid of parentheses
2x^2-6x-1x+3
We add all the numbers together, and all the variables
2x^2-7x+3
Back to the equation:
-(2x^2-7x+3)
We get rid of parentheses
x^2-2x^2-2x-3x+7x+6-3=0
We add all the numbers together, and all the variables
-1x^2+2x+3=0
a = -1; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-1)·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| 2x2-17x=0 | | 3x2-675=0 | | 68x+7=7 | | 22x+64=180 | | X^2-2x=109 | | (2x^2+3x)^2-7(2x^2+3x)=-10 | | 3x+5+8+9=113 | | 12a+6+90=180 | | 7t+2=180 | | 14e+6+90=180 | | 500+8m=98 | | (x)(x+3)=66 | | -4x-8=-(5x-3 | | 3x+3=8x-332 | | 6p+15=19+4p | | 8-3y=-35 | | 157+102+x=180 | | 61+6x+10+43=180 | | 103+3x-12+47=180 | | 2(9x-3)-3x+5=9 | | 200+30x=10x+4.5000 | | 23-2c=4c-15 | | 23-2c=4c-14 | | -2.15+1.8x=12.7+4.8x | | -v/9=-45 | | -19+g=25 | | 5=20w | | 4x+3+4x-11+76=180 | | 2x-10+43+109=180 | | -4/3=-5/2x+7/4 | | 25n+10=510 | | 32-x=23 |

Equations solver categories