(x-20)+(2x-118)+(1/2x+10)=180

Simple and best practice solution for (x-20)+(2x-118)+(1/2x+10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-20)+(2x-118)+(1/2x+10)=180 equation:



(x-20)+(2x-118)+(1/2x+10)=180
We move all terms to the left:
(x-20)+(2x-118)+(1/2x+10)-(180)=0
Domain of the equation: 2x+10)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-20-118+10-180=0
We multiply all the terms by the denominator
x*2x+2x*2x-20*2x-118*2x+10*2x-180*2x+1=0
Wy multiply elements
2x^2+4x^2-40x-236x+20x-360x+1=0
We add all the numbers together, and all the variables
6x^2-616x+1=0
a = 6; b = -616; c = +1;
Δ = b2-4ac
Δ = -6162-4·6·1
Δ = 379432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{379432}=\sqrt{4*94858}=\sqrt{4}*\sqrt{94858}=2\sqrt{94858}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-616)-2\sqrt{94858}}{2*6}=\frac{616-2\sqrt{94858}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-616)+2\sqrt{94858}}{2*6}=\frac{616+2\sqrt{94858}}{12} $

See similar equations:

| (15+x)*(x+1)=(21+x)*(x) | | 19y+8/4=40 | | -6(2x+7)=6 | | 3x+3x=16+8 | | 5x+6+4x=10 | | 14=y/4+13 | | 0=x^2-4x-77 | | -10(x+5)=-58 | | 65=5y-8 | | 5/8w=15 | | 19+2=7x | | -209=-11x | | 2^3x+1=4^x+7 | | 7.18x+21.54=43.08 | | .66(x-6)+1=5 | | 35x+34=-1051 | | (n-6)=(n+6) | | 14*36=x*32 | | 3x(5-x)+(x+2)^2=-6x+7 | | 22+5x=-178 | | 6z-3=51 | | 2/3=-14/x | | 1x-91=12 | | (E+2)x4=28 | | -34-39a=-736 | | -6+30n=-1356 | | (-x-3)=(6+8+8 | | (x+2)*(x+5)=(x+12)*(x) | | 15-23x=-54 | | (x+2)+(x+5)=(x+12)+(x) | | F(x)=6•(0.4)x | | 8x^2-1=4x^2 |

Equations solver categories