(x-2)2-3x=x(x+1)-4

Simple and best practice solution for (x-2)2-3x=x(x+1)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)2-3x=x(x+1)-4 equation:



(x-2)2-3x=x(x+1)-4
We move all terms to the left:
(x-2)2-3x-(x(x+1)-4)=0
We add all the numbers together, and all the variables
-3x+(x-2)2-(x(x+1)-4)=0
We multiply parentheses
-3x+2x-(x(x+1)-4)-4=0
We calculate terms in parentheses: -(x(x+1)-4), so:
x(x+1)-4
We multiply parentheses
x^2+x-4
Back to the equation:
-(x^2+x-4)
We add all the numbers together, and all the variables
-1x-(x^2+x-4)-4=0
We get rid of parentheses
-x^2-1x-x+4-4=0
We add all the numbers together, and all the variables
-1x^2-2x=0
a = -1; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-1)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-1}=\frac{0}{-2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| 3-2(x+1)=x-5 | | 3x-32=7x-4 | | 6(z+8)=4(z+1)-6 | | 1/2b(b-3)=5/2 | | (x-2)^2-3x=x(x-1)-4 | | 9f+3f-20=16+8f | | -4(t-3)-13=-3(t+2) | | 35=25b+1/5 | | {7}{8}x=21 | | 4x²+4x-24=0 | | | | 17-19z=-20z | | | | | | 6(x-6)+4=8x+-10 | | -11p=-11 | | 19-9k=-16+13k+13 | | -5a+-5a-(-11a)=20 | | 3x-2=3x-10 | | -5a+-5a-(11a)=20 | | (x+15)/3=2(x+10) | | (x+15)/3=2(x | | -9x+7=-x+37 | | -4=-16/p | | 4(8x+1)-15=x-(x+10) | | -17p+15p=6 | | 4x-44=2x-4 | | 3x+9+5x+8=65 | | 12x-5=31+3x | | 7+7(x-8)=8-6(x-5) | | 12x=5.16 | | 17+19q=18q+5 |

Equations solver categories