(x-2)(x+1)=-x(x-3)

Simple and best practice solution for (x-2)(x+1)=-x(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)(x+1)=-x(x-3) equation:



(x-2)(x+1)=-x(x-3)
We move all terms to the left:
(x-2)(x+1)-(-x(x-3))=0
We multiply parentheses ..
(+x^2+x-2x-2)-(-x(x-3))=0
We calculate terms in parentheses: -(-x(x-3)), so:
-x(x-3)
We multiply parentheses
-x^2+3x
We add all the numbers together, and all the variables
-1x^2+3x
Back to the equation:
-(-1x^2+3x)
We get rid of parentheses
x^2+1x^2+x-2x-3x-2=0
We add all the numbers together, and all the variables
2x^2-4x-2=0
a = 2; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·2·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*2}=\frac{4-4\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*2}=\frac{4+4\sqrt{2}}{4} $

See similar equations:

| 11x+3(x+7)=7(x+2) | | 0.4x=8-3x | | 3x+12+9x=75 | | x^2-2x=x+10 | | 435/j=15 | | 4n-2/3=34/3=n=3 | | 100-2x=14 | | -141-11x-5x=115 | | 435j= 15 | | y=√-1 | | (5x3)+(5x1/6)=201/6 | | 6n=18+8 | | 19n+4n-23n+n=16 | | 3÷x+7=5 | | 45=1/3w+7 | | 3z+8=z-12 | | 0=4x2+33x-27 | | 4b-3(-8b+2)=14+8b | | 15=5b-10 | | -1/3x=-2x+10 | | (3x-1)^-2/3=1 | | 10=x/120 | | -(8y+5)-(-7y-6)=0 | | 6x+4=9x+8 | | 4a+7=28/2 | | 4x-6=196 | | 1/3x+2=1/6x=4/3 | | 15x+8x–3x=120 | | 1/3x=2=1/6x=4/3 | | 4(m-1)+5=1-4m | | 24-48=3x-3-9 | | 3x-5.6=12.4 |

Equations solver categories