(x-150)(1-2/3)=250

Simple and best practice solution for (x-150)(1-2/3)=250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-150)(1-2/3)=250 equation:



(x-150)(1-2/3)=250
We move all terms to the left:
(x-150)(1-2/3)-(250)=0
We add all the numbers together, and all the variables
(x-150)(-2/3+1)-250=0
We multiply parentheses ..
(-2x^2+x-150*-2/3-150)-250=0
We multiply all the terms by the denominator
(-2x^2+x-150*-2-250*3-150)=0
We get rid of parentheses
-2x^2+x-2-150-150*-250*3=0
We add all the numbers together, and all the variables
-2x^2+x+112348=0
a = -2; b = 1; c = +112348;
Δ = b2-4ac
Δ = 12-4·(-2)·112348
Δ = 898785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{898785}=\sqrt{9*99865}=\sqrt{9}*\sqrt{99865}=3\sqrt{99865}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{99865}}{2*-2}=\frac{-1-3\sqrt{99865}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{99865}}{2*-2}=\frac{-1+3\sqrt{99865}}{-4} $

See similar equations:

| 9=2y=9 | | (x+2)-5=3(x-5) | | (x+3)+x=33 | | 2((x+3)+x)=66 | | (5-2m)/2=m/3-1/2 | | (5-2m)/2=(m/3)-(1/2) | | (y-9)/4+18=-2 | | (5a+1)/2=23 | | 10+2y=-4 | | 0.3e=3 | | P=370+0.3x | | -12=m/3 | | x-(0.05x)=100 | | P=570-0.5x | | 5y+11+7y-5=90 | | 5d=2d+0 | | n+31/6=9 | | g/4+8=11 | | X-0.01(x)=10 | | 5x-3/9=3x-7/6 | | 8b-2(2+3b)=2(1-2b)-3(b-1) | | y=21-6*3 | | 3x-(21-6x)=6 | | 0.32(10x-2)=0.8x+14. | | .75a=-3 | | 18-2a=8 | | 3π-4r=0 | | 10x^2-40x+24000=0 | | 12x^2-2x+23960=0 | | (18-x)*(18-3x)=0 | | -4(y-5)y=6. | | d/2+5=9 |

Equations solver categories