If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-1)2+11x+199=3x^2-(x-2)2
We move all terms to the left:
(x-1)2+11x+199-(3x^2-(x-2)2)=0
We add all the numbers together, and all the variables
11x+(x-1)2-(3x^2-(x-2)2)+199=0
We multiply parentheses
11x+2x-(3x^2-(x-2)2)-2+199=0
We calculate terms in parentheses: -(3x^2-(x-2)2), so:We add all the numbers together, and all the variables
3x^2-(x-2)2
We multiply parentheses
3x^2-2x+4
Back to the equation:
-(3x^2-2x+4)
13x-(3x^2-2x+4)+197=0
We get rid of parentheses
-3x^2+13x+2x-4+197=0
We add all the numbers together, and all the variables
-3x^2+15x+193=0
a = -3; b = 15; c = +193;
Δ = b2-4ac
Δ = 152-4·(-3)·193
Δ = 2541
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2541}=\sqrt{121*21}=\sqrt{121}*\sqrt{21}=11\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-11\sqrt{21}}{2*-3}=\frac{-15-11\sqrt{21}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+11\sqrt{21}}{2*-3}=\frac{-15+11\sqrt{21}}{-6} $
| 3(×-4)=8-5(3x+1) | | 0.3x+0.9=0.9x-2.7 | | 26y-2=52 | | (z+1)^2=-49 | | 9(x+3)+1=4x+5(5+x) | | 5*117=9c+160 | | 5x+21=12x+2 | | (1/2)x-5=55 | | 48x-60=7(6x-8)+6x-4 | | 100=30/3x+30 | | 3r+6+2r+4=40 | | -3+32x-64=-8-32x-20 | | 4x-3=4x+16 | | 9-2x+11=12 | | 3n=100 | | 144=x2+10x | | 5x+x=1068 | | 7x+9x-7=16 | | 4.6+1.7x=2.7x | | 0.5x+0.3=0.8x-2.4 | | 3x+1/x=5/2 | | 9+1/5b=3/10b | | 40+49.45x=54.45x | | 6x-8=6(×+7) | | X+4=-5x+28 | | (3y+4)^2+49=0 | | 7(x-2)+3=4))(2x-6)-2 | | -4(2x/3+5)=4 | | 5(-x)+3=-2 | | 2f=22 | | (8+2x)(22+2x)=576 | | f-7=4 |