If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-1)(x+2)+(x-1)(x-5)=(x-1)(x-5)
We move all terms to the left:
(x-1)(x+2)+(x-1)(x-5)-((x-1)(x-5))=0
We multiply parentheses ..
(+x^2+2x-1x-2)+(x-1)(x-5)-((x-1)(x-5))=0
We calculate terms in parentheses: -((x-1)(x-5)), so:We get rid of parentheses
(x-1)(x-5)
We multiply parentheses ..
(+x^2-5x-1x+5)
We get rid of parentheses
x^2-5x-1x+5
We add all the numbers together, and all the variables
x^2-6x+5
Back to the equation:
-(x^2-6x+5)
x^2-x^2+2x-1x+(x-1)(x-5)+6x-2-5=0
We multiply parentheses ..
x^2-x^2+(+x^2-5x-1x+5)+2x-1x+6x-2-5=0
We add all the numbers together, and all the variables
(+x^2-5x-1x+5)+7x-7=0
We get rid of parentheses
x^2-5x-1x+7x+5-7=0
We add all the numbers together, and all the variables
x^2+x-2=0
a = 1; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·1·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*1}=\frac{2}{2} =1 $
| -1=w-1 | | 3x+x(5-2×)=0 | | 2b-0.6b=3b | | 16x-80x-5=0 | | 1/3(18x+3)=-3 | | 9-6x-6x=129 | | 9=7v+86 | | d=16(2^2) | | 3x-12=27+15x+18x | | 8-3b=-b-3b | | 7x-5x2=0 | | 21n+7=40n+54 | | 3y-10y=-1 | | 8m-20=40 | | -0.1y=-0.8 | | 5z^2-39z-54=0 | | 14y-11y=19-11y | | 3v=6/4 | | -.3n-5=0.8n-16 | | 748=16t^2 | | 0=x^2-9x-252 | | 85x+60=425 | | 5/6=8b | | -0.5u+4.5=0.1u+1.7 | | d=16(5)^2 | | z/5-2=-2 | | 4-8x=-18-3x | | -1=5u+4 | | 2{3-5(x-1)}=7x-1 | | 20x+10(2x-3)+5(3x-4)+(3x+7)=1059 | | 330+x÷5=87 | | -11x-22=110 |