(x+7)(x+7)=3(x-5)(x-5)

Simple and best practice solution for (x+7)(x+7)=3(x-5)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+7)(x+7)=3(x-5)(x-5) equation:



(x+7)(x+7)=3(x-5)(x-5)
We move all terms to the left:
(x+7)(x+7)-(3(x-5)(x-5))=0
We multiply parentheses ..
(+x^2+7x+7x+49)-(3(x-5)(x-5))=0
We calculate terms in parentheses: -(3(x-5)(x-5)), so:
3(x-5)(x-5)
We multiply parentheses ..
3(+x^2-5x-5x+25)
We multiply parentheses
3x^2-15x-15x+75
We add all the numbers together, and all the variables
3x^2-30x+75
Back to the equation:
-(3x^2-30x+75)
We get rid of parentheses
x^2-3x^2+7x+7x+30x+49-75=0
We add all the numbers together, and all the variables
-2x^2+44x-26=0
a = -2; b = 44; c = -26;
Δ = b2-4ac
Δ = 442-4·(-2)·(-26)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-24\sqrt{3}}{2*-2}=\frac{-44-24\sqrt{3}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+24\sqrt{3}}{2*-2}=\frac{-44+24\sqrt{3}}{-4} $

See similar equations:

| 6c+2c-5=1 | | 6-8-6x=3x-6 | | 3x+20=5x-P | | 5a^2-12=-11a | | 23=7(u-7)+5u | | -39=7(w-7)+3w | | 5x+-3=3x+15 | | 2x^-16x+26=0 | | 6-8+6x=3x-6 | | 18x=-13×+62 | | 3/2x-5=2x+1/3 | | (3x)+(12x-30)=180 | | x(x+6)=8(x+3) | | 3x+12+2x=62 | | 52=-v+282 | | 289=-x+28 | | 289-y=338 | | 0=x2−4x+5 | | x²+10x+38=0 | | x·x-23x-750=0 | | x^2-23x-750=0 | | 7u+u=48 | | 2x*37=143 | | 2x*43=147 | | 8=4u-8 | | a2−9=0 | | (-3x-14)5x=-70 | | 7x+(3+2x)=93 | | -6=v5+4 | | 3(x^-5)-(3^-2x)=0 | | x^2=6x/3-1/3 | | 7x*21=19 |

Equations solver categories