(x+6)(3x-1)+(8x-9)(4x-3=)

Simple and best practice solution for (x+6)(3x-1)+(8x-9)(4x-3=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+6)(3x-1)+(8x-9)(4x-3=) equation:



(x+6)(3x-1)+(8x-9)(4x-3=)
We move all terms to the left:
(x+6)(3x-1)+(8x-9)(4x-3-())=0
We multiply parentheses ..
(+3x^2-1x+18x-6)+(8x-9)(4x-3-())=0
We calculate terms in parentheses: +(8x-9)(4x-3-()), so:
8x-9)(4x-3-()
We add all the numbers together, and all the variables
8x-9)(4x
Back to the equation:
+(8x-9)(4x)
We multiply parentheses
(+3x^2-1x+18x-6)+32x^2-36x=0
We get rid of parentheses
3x^2+32x^2-1x+18x-36x-6=0
We add all the numbers together, and all the variables
35x^2-19x-6=0
a = 35; b = -19; c = -6;
Δ = b2-4ac
Δ = -192-4·35·(-6)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{1201}}{2*35}=\frac{19-\sqrt{1201}}{70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{1201}}{2*35}=\frac{19+\sqrt{1201}}{70} $

See similar equations:

| -45=10-5y | | g-23=17-4g | | 4x+34=-2(2x=3) | | 32-5n=7-(5n-5) | | 3n=69-30 | | 5b-9-2=13-b | | x-2/9=x+3/14 | | Z^6=3+4i | | 9j+10=73 | | g÷5=7 | | 7b+15=4b-21 | | 5(0.5×a)=2(0.5+a) | | 2(2c+4)+8=36 | | 3/20=x1/100 | | (x-1)+x+(x+17)=180 | | -6x+26=5(1-8x)+3x | | 9s-13=4s+17 | | 22=–2a+10 | | 5(0.5×l)=2(0.5+l) | | 4d-4=2d+2 | | 4m-3/4=-(9+4m)/8 | | (4x)+(3x+1)=50 | | 9b-8=2b+6 | | 5(2b-4)=4b+22 | | 6k-41=36-k | | 24-(8x3)-22=80 | | 2c+5=4c-11 | | 4x-12x=24-84-4x | | x+5=7+4 | | 2.3(7/f)=2.3 | | 5x-9=x+3=2x+2 | | 13x+14=90 |

Equations solver categories