If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+5)+((37-x)+8)=x(37-x)+300
We move all terms to the left:
(x+5)+((37-x)+8)-(x(37-x)+300)=0
We add all the numbers together, and all the variables
(x+5)+((-1x+37)+8)-(x(-1x+37)+300)=0
We get rid of parentheses
x+((-1x+37)+8)-(x(-1x+37)+300)+5=0
We calculate terms in parentheses: +((-1x+37)+8), so:
(-1x+37)+8
We get rid of parentheses
-1x+37+8
We add all the numbers together, and all the variables
-1x+45
Back to the equation:
+(-1x+45)
We calculate terms in parentheses: -(x(-1x+37)+300), so:We get rid of parentheses
x(-1x+37)+300
We multiply parentheses
-1x^2+37x+300
Back to the equation:
-(-1x^2+37x+300)
1x^2-37x+x-1x-300+45+5=0
We add all the numbers together, and all the variables
x^2-37x-250=0
a = 1; b = -37; c = -250;
Δ = b2-4ac
Δ = -372-4·1·(-250)
Δ = 2369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-\sqrt{2369}}{2*1}=\frac{37-\sqrt{2369}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+\sqrt{2369}}{2*1}=\frac{37+\sqrt{2369}}{2} $
| 7a-13=29 | | x^2+3+40=0 | | 27-8y=28 | | 7(-4x+3)=77 | | 8x−10+3x+90=180 | | -7(-3-2x)=-147 | | 4x-20=x-7 | | 4(-3x+8)=-52 | | 6v+44=8(v+7) | | 6(-1x+2)=-18 | | 6(3x-2)=168 | | -7x+3=6x+94 | | 2x-9/3=4 | | 7x-3=63+x | | -9=m-10 | | -7w+3(w+4)=36 | | 2x^2+18+9=0 | | -20x=340 | | 2(2/3x+5)+2(1/3x+5)=90 | | 2x^2+18+9=09 | | 2x+3x=230 | | 2(5m+3)=4(m-3) | | 9⁄16x2⁄4= | | 7-(x-3)+3x=6(x-5)+x | | 5/x=0.5 | | 7+14x=2(x-2) | | 0=3e^2 | | -3x+5-5x=-35 | | 2|1-2x|-2=8 | | 88=-3x-6x+7 | | 3(7-y)-4y=7 | | 7x-39+4=2x |