If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+30)(2x)=180
We move all terms to the left:
(x+30)(2x)-(180)=0
We multiply parentheses
2x^2+60x-180=0
a = 2; b = 60; c = -180;
Δ = b2-4ac
Δ = 602-4·2·(-180)
Δ = 5040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5040}=\sqrt{144*35}=\sqrt{144}*\sqrt{35}=12\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{35}}{2*2}=\frac{-60-12\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{35}}{2*2}=\frac{-60+12\sqrt{35}}{4} $
| 14=11+8/w | | 7w–2w=9 | | 80(n+5)=140 | | 3x-3÷4=2x+1÷3 | | 4(2x+1)=3(4x-8) | | -1/4x+21/2=3-0.6x | | 12x+21=57 | | 35=v/2+14 | | `6x+11=21` | | 6+8f.f=4 | | m-18=55 | | 88.79-n=44.50 | | a(a-7)=-12 | | 2(a-7(=-12 | | 124+(2x)+(x+31)=180 | | -3(1-4a)=-3 | | 27x2–9x=0 | | -5(3-5x=-14+21x+24-x | | -7x^2+21=84 | | -7x^2-21=84 | | y+-25=35 | | 63=3r | | 1=(9x+7) | | 3a2+4a=0 | | 0.5(x–1)(6x)=18 | | a³=1728 | | 20+2x^2=28 | | 8n−4=52 | | -6y-5=7y-y | | t10+6=12 | | 18+26x=180 | | `x+3+x-8+x=55` |