If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+4a=0
a = 3; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*3}=\frac{-8}{6} =-1+1/3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*3}=\frac{0}{6} =0 $
| 0.5(x–1)(6x)=18 | | a³=1728 | | 20+2x^2=28 | | 8n−4=52 | | -6y-5=7y-y | | t10+6=12 | | 18+26x=180 | | `x+3+x-8+x=55` | | 2x+3=63-x | | 3(5x-7=15x-21 | | 0.89x+16=1.09x | | 40/32=48/x | | 2b+7=20 | | X^3-12x=8 | | -3(2x-4)+10=-28 | | 5.8t+15=-`14 | | 171532=+x | | -x+2=5x+20 | | 5.8t+15=-`4 | | 6-x/7-2x=-1 | | | | { | | { | | -8x-57=-3 | | –7t+15t−9=15 | | 1.6/m=2/3 | | 11u+9=20 | | x=21=39 | | 108=(15x+3) | | 6a−–3a=–18 | | –9j+19j=–10 | | 2x+3x+50º=180 |