(x+3)2=x2-3(1-x)

Simple and best practice solution for (x+3)2=x2-3(1-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)2=x2-3(1-x) equation:



(x+3)2=x2-3(1-x)
We move all terms to the left:
(x+3)2-(x2-3(1-x))=0
We add all the numbers together, and all the variables
(x+3)2-(x2-3(-1x+1))=0
We multiply parentheses
2x-(x2-3(-1x+1))+6=0
We calculate terms in parentheses: -(x2-3(-1x+1)), so:
x2-3(-1x+1)
We add all the numbers together, and all the variables
x^2-3(-1x+1)
We multiply parentheses
x^2+3x-3
Back to the equation:
-(x^2+3x-3)
We get rid of parentheses
-x^2+2x-3x+3+6=0
We add all the numbers together, and all the variables
-1x^2-1x+9=0
a = -1; b = -1; c = +9;
Δ = b2-4ac
Δ = -12-4·(-1)·9
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{37}}{2*-1}=\frac{1-\sqrt{37}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{37}}{2*-1}=\frac{1+\sqrt{37}}{-2} $

See similar equations:

| 60n=14n-14 | | 550=60x+315 | | n/2=56/112 | | n+2n-5+2n-5=20 | | 1/4d=-6 | | 3n^2(n=1)^2 | | 36-7x=7x-35 | | 31/6q+1/3q-q=1 | | 0.075=x(0.05) | | 115x8=19 | | Z³-4+4i=0 | | 7(4n+5)=2(7n+3) | | 7.5=0.05x | | (X-3)^2-(2x+5)^2=-16 | | −y+1=3 | | y−1=3 | | -9y+17=71 | | F(x)=1/2x+1 | | -(x+6)+2=-3(x+5) | | 4(5m-3)=5(2m+2) | | m=2/5=1/2 | | 3(5x-4)=-13 | | 5(-4x+24)-x+6=0 | | 5x+15-4x=-16 | | 7-6x=4x+19 | | 2(2x-5)=20x | | 15x-5+12x-4=180 | | 12x+24=6x | | 7s+4(3-S=18 | | 5x+2=10+ | | x^2-3x-10=-5x-7 | | R=175x-0.4x^2 |

Equations solver categories