(x+25)(2x-4)+63=180

Simple and best practice solution for (x+25)(2x-4)+63=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+25)(2x-4)+63=180 equation:



(x+25)(2x-4)+63=180
We move all terms to the left:
(x+25)(2x-4)+63-(180)=0
We add all the numbers together, and all the variables
(x+25)(2x-4)-117=0
We multiply parentheses ..
(+2x^2-4x+50x-100)-117=0
We get rid of parentheses
2x^2-4x+50x-100-117=0
We add all the numbers together, and all the variables
2x^2+46x-217=0
a = 2; b = 46; c = -217;
Δ = b2-4ac
Δ = 462-4·2·(-217)
Δ = 3852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3852}=\sqrt{36*107}=\sqrt{36}*\sqrt{107}=6\sqrt{107}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-6\sqrt{107}}{2*2}=\frac{-46-6\sqrt{107}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+6\sqrt{107}}{2*2}=\frac{-46+6\sqrt{107}}{4} $

See similar equations:

| 5x+3=7×-1. | | 3(x+4)-2=2(2x+5)=x | | #x#/4=18 | | 8x+74=2x+56-180 | | x=16+2/3 | |  6x+57=2x+315 | | X+x+1/2x+1=100 | | -2(x-2)+4x=-3(x+4)+13 | | X-18+x-11+90=180 | | 11x+13x=50 | | x-18=x-11=180 | | (13x+11x)÷5=10 | | 4x+9=5x+10/x | | 42−x=81 | | (2x(x-8))/((x-4)^2)=0 | | x1,08-x0,92=800 | | (2x(x-8))/(x-4)^2=0 | | 6x^2-1x+48=0 | | 12-2v=2 | | 3x-x2=400 | | 11/27=-a/9 | | 3(7x+8)=45 | | 3(7x+8)=47 | | x*0.3=63 | | 42=7+5x | | 3x+1+x=61 | | -40x=20/3 | | 4x+3=25+3x | | -4x=80/3 | | −12+2t=-14 | | 2(7+7x)=238 | | y+2.27=9.22 |

Equations solver categories