If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+12)(x)=72
We move all terms to the left:
(x+12)(x)-(72)=0
We multiply parentheses
x^2+12x-72=0
a = 1; b = 12; c = -72;
Δ = b2-4ac
Δ = 122-4·1·(-72)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{3}}{2*1}=\frac{-12-12\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{3}}{2*1}=\frac{-12+12\sqrt{3}}{2} $
| -8=-10j-6 | | 20x-7=12x+9= | | 2x+-10=3x-4+1x | | 3n+2(n-1)-16=32 | | 3x(-4)=60 | | 8x-4=10x+(-1) | | 36x+1-16x-4=85 | | 1.3=x5.8 | | X2+12x=72 | | n/8-7=-6 | | 7x-1+3(4x+5)=90 | | -2(3x+5)=-3(4x+1) | | 7x+(-7)=-9x-4 | | (8x+17)=67 | | -3(2x-1)+9=5(x-2) | | (9x-12)=42 | | -2(c-11)=3(c+2) | | 2x+3(2x+4)-2=2(4x+5) | | 4(2-x)=-4+3 | | x/5+1/6=-2 | | 4(p+2)=-2(2-8p) | | (2x/6)=(1/3) | | (8x-5)=59 | | 5x-5+7x+5=180 | | 3x-1=2x+(-1) | | (1x/6)=(1/3) | | (2x+19)=(9x+18) | | 2(3x+9)-4=6x+5 | | 12n–42=3(4n–14) | | 3(x+8)+6=30 | | (8x+16)=116 | | 4(1-4k)=-2(-2k-2) |