If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+12X=72
We move all terms to the left:
X2+12X-(72)=0
We add all the numbers together, and all the variables
X^2+12X-72=0
a = 1; b = 12; c = -72;
Δ = b2-4ac
Δ = 122-4·1·(-72)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{3}}{2*1}=\frac{-12-12\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{3}}{2*1}=\frac{-12+12\sqrt{3}}{2} $
| n/8-7=-6 | | 7x-1+3(4x+5)=90 | | -2(3x+5)=-3(4x+1) | | 7x+(-7)=-9x-4 | | (8x+17)=67 | | -3(2x-1)+9=5(x-2) | | (9x-12)=42 | | -2(c-11)=3(c+2) | | 2x+3(2x+4)-2=2(4x+5) | | 4(2-x)=-4+3 | | x/5+1/6=-2 | | 4(p+2)=-2(2-8p) | | (2x/6)=(1/3) | | (8x-5)=59 | | 5x-5+7x+5=180 | | 3x-1=2x+(-1) | | (1x/6)=(1/3) | | (2x+19)=(9x+18) | | 2(3x+9)-4=6x+5 | | 12n–42=3(4n–14) | | 3(x+8)+6=30 | | (8x+16)=116 | | 4(1-4k)=-2(-2k-2) | | 3(2x+8)=-43+49 | | (3x+7)=113 | | -11+6x+24=-36 | | -5(x-3)=7-6x | | n^2+13=75 | | 2(x-6)-25=-12 | | n+3n-2n= | | 27=5x+15-7x | | 2x+(-1)=4x+9 |