If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+10)(x)=50
We move all terms to the left:
(x+10)(x)-(50)=0
We multiply parentheses
x^2+10x-50=0
a = 1; b = 10; c = -50;
Δ = b2-4ac
Δ = 102-4·1·(-50)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{3}}{2*1}=\frac{-10-10\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{3}}{2*1}=\frac{-10+10\sqrt{3}}{2} $
| 48-x=(4•x)+7 | | 3x=1.500 | | 2x+5)+(3x-10)=70 | | 15n=80 | | X^4-12x+4=0 | | 16=8+4n-8n | | 18.3−3.7x−5.4=1.5x−7.9 | | 1/2x+10=1-4x+54 | | -192=6(5x+8) | | 8x+8=10x+5-5 | | 5x^2+12x+11=0 | | 1.3x-5=10 | | 5x-12=12.5 | | −3(53c)=4c37 | | 6(8−2x)=4x | | S(t)=-25t²+100t | | 8^x=2^6*4^9 | | 25v+6=32+24v | | 2.8a=54a | | (x²-3x)=0 | | X-5=-7+3x | | 3x+2+7x+5+x+10=6x+6x+6x+6x | | 1/9x=3^-x/3×81x | | 98x-67+123=8765 | | 5*5-8(5+-2)+6*b=39 | | 10-4h=h+5 | | (X/30)+x=40 | | 6(u+2)=-4(2u-1)+2u | | 5(w=1)-7=3(w-1)+2w | | 1/4(x=3)2-x | | 3(y+2)+2y=7(y-1) | | 4(m+3)=18,m |