(x+1)(x-5)=(4x)(-x+3)

Simple and best practice solution for (x+1)(x-5)=(4x)(-x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x-5)=(4x)(-x+3) equation:



(x+1)(x-5)=(4x)(-x+3)
We move all terms to the left:
(x+1)(x-5)-((4x)(-x+3))=0
We add all the numbers together, and all the variables
(x+1)(x-5)-(4x(-1x+3))=0
We multiply parentheses ..
(+x^2-5x+x-5)-(4x(-1x+3))=0
We calculate terms in parentheses: -(4x(-1x+3)), so:
4x(-1x+3)
We multiply parentheses
-4x^2+12x
Back to the equation:
-(-4x^2+12x)
We get rid of parentheses
x^2+4x^2-5x+x-12x-5=0
We add all the numbers together, and all the variables
5x^2-16x-5=0
a = 5; b = -16; c = -5;
Δ = b2-4ac
Δ = -162-4·5·(-5)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{89}}{2*5}=\frac{16-2\sqrt{89}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{89}}{2*5}=\frac{16+2\sqrt{89}}{10} $

See similar equations:

| x+2x+3x+4x+5x+6x+7x+8x+9x+10x=53+2x | | 95-7x=2(60-6x) | | 5x-2x(-2+1)=6x+4 | | -3(-1+x)=2(3x+4) | | 2438/n=121 | | x/6=275+25 | | x=360+111.5x | | 111.5=360-1.7x | | 360-1.7x=111.5 | | 56=2x-58 | | 55x-1+5x=30 | | Y+12x=00 | | 3x+3x/2=10 | | I*(2x-6)=128 | | 3z^2-12=3-(1+z) | | 300+x=660-240 | | 300+x=660-24 | | x+280=2x+65 | | 75-x=28 | | 3x+7+3(x-1)=2(2x+) | | Z2+14z=0 | | z+10/3=1/4 | | (8x+10)+(6x+20)=180 | | y+1/12+5/12=1 | | (D-5D+4)y=0 | | 25^x=0.2^2x-4 | | 3x-1/2=4x+1 | | 8(3-p)+3p=19 | | x+.075x=250 | | X2+8n+4=0 | | X2+y2-100=0 | | 25x^2+75x=36 |

Equations solver categories