If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+8X+4=0
We add all the numbers together, and all the variables
X^2+8X+4=0
a = 1; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·1·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*1}=\frac{-8-4\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*1}=\frac{-8+4\sqrt{3}}{2} $
| X2+y2-100=0 | | 25x^2+75x=36 | | 4b^2=-1444 | | x*0.8=125 | | S*2+4s+20=0 | | 0x^2+25x+3750=0 | | 8=4x2 | | 8=4x^2 | | 2/3+5a=12 | | 2(4x+7)=38 | | 6x+2)+82=180 | | 6x+20)+82=180 | | 4x-28=2x-10 | | 5^4*5^2=5^n | | X+14/x=-9 | | 2x.3x+17=125 | | 4s=176 | | 8g=14.20 | | 9e+28=0 | | 2n^2+n+120=0 | | 20=2x-9 | | 2(y+5)=33 | | 3x+4x-2=10 | | 450x350=200 | | 14x-3x=10-7x | | x+x/6=28 | | 5/7y=3*1/4-2 | | z^2-8z+41=0 | | X^3-6x^2+7x-6=0 | | 4.8n+349=1.000 | | m-3A^3=24(m-4) | | 360/3x=10 |