(x+1)(x+3)+(x+3)(4x-5)=0

Simple and best practice solution for (x+1)(x+3)+(x+3)(4x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+3)+(x+3)(4x-5)=0 equation:



(x+1)(x+3)+(x+3)(4x-5)=0
We multiply parentheses ..
(+x^2+3x+x+3)+(x+3)(4x-5)=0
We get rid of parentheses
x^2+3x+x+(x+3)(4x-5)+3=0
We multiply parentheses ..
x^2+(+4x^2-5x+12x-15)+3x+x+3=0
We add all the numbers together, and all the variables
x^2+(+4x^2-5x+12x-15)+4x+3=0
We get rid of parentheses
x^2+4x^2-5x+12x+4x-15+3=0
We add all the numbers together, and all the variables
5x^2+11x-12=0
a = 5; b = 11; c = -12;
Δ = b2-4ac
Δ = 112-4·5·(-12)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*5}=\frac{-30}{10} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*5}=\frac{8}{10} =4/5 $

See similar equations:

| 2x3+316=2 | | 6-3t=-9 | | 1+(4x)−21−6=2 | | 3(2r+5)=2r+45-r | | 5x^2+11x-354=0 | | 4v−8=5v+5 | | -11x=62 | | 0,0122(x)=12340 | | -11x=-30 | | 5x^2-3x=17x | | 2x=10(2) | | 2n+15=14 | | 8x^2+8x+16=24 | | 24–6x=30 | | 1.7=m-9 | | 4=o-5 | | 43=n-7 | | 27=4/3x+19 | | F(x-5)=4(x-5)-9 | | 7=2+5(z*10) | | (x-1)(x+4)=(x-3)(x+3) | | (2d-1)/3-9=-4 | | 12x²-204x+630=0 | | -3+13=5z | | 4r^2+r=13r | | 0.5a-1,3=1.5a-0.7 | | z+10-3=11 | | (2x+5)^2=6+4x^2 | | x-90=20x | | 108=12c | | 0.5h^2+h=4h | | 4(x+1)=x+x-6 |

Equations solver categories