(x*x)+(x*x)=12

Simple and best practice solution for (x*x)+(x*x)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*x)+(x*x)=12 equation:



(x*x)+(x*x)=12
We move all terms to the left:
(x*x)+(x*x)-(12)=0
We add all the numbers together, and all the variables
(+x*x)+(+x*x)-12=0
We get rid of parentheses
x*x+x*x-12=0
Wy multiply elements
x^2+x^2-12=0
We add all the numbers together, and all the variables
2x^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $

See similar equations:

| 7.93-15.2x=0.66x | | -8x-5=-3 | | 8-1/4h=12-1/2h= | | 2x+15+8x-3=180 | | (-1/2)t+9=-27 | | -4(5-5v)=-120 | | 10x+23+55-3x+8x+12=180 | | 7(n+4)=2- | | .-3x=-48 | | x+7=9x+4 | | -12=-x-15 | | X+15+5x-2x=3x-15 | | 9y+18=4y+42 | | 3÷4x-5=4 | | (9x-6)=6(3x-2)+22 | | 2x-5=2x | | 7(x+1)-4=5x+2(-1+x) | | 166-5x+x^2=180 | | 4y-29=28 | | 3w+27=6(w+9) | | 2x+16+58=180 | | 2g-13=3$. | | 8e+6=6e+20 | | -5-4m=-2m+9 | | -3x-5=-53 | | 12x-26=10x+34 | | 8x-1=11x+25 | | 4x-8x+3=-1 | | 6(x=1)=2x-1 | | 19+16t=-14+13t | | 8-1/2h=12-1/2h | | 7.50x=5.50x+25 |

Equations solver categories