(x)=(x-2)(3x+3)

Simple and best practice solution for (x)=(x-2)(3x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)=(x-2)(3x+3) equation:



(x)=(x-2)(3x+3)
We move all terms to the left:
(x)-((x-2)(3x+3))=0
We multiply parentheses ..
-((+3x^2+3x-6x-6))+x=0
We calculate terms in parentheses: -((+3x^2+3x-6x-6)), so:
(+3x^2+3x-6x-6)
We get rid of parentheses
3x^2+3x-6x-6
We add all the numbers together, and all the variables
3x^2-3x-6
Back to the equation:
-(3x^2-3x-6)
We add all the numbers together, and all the variables
x-(3x^2-3x-6)=0
We get rid of parentheses
-3x^2+x+3x+6=0
We add all the numbers together, and all the variables
-3x^2+4x+6=0
a = -3; b = 4; c = +6;
Δ = b2-4ac
Δ = 42-4·(-3)·6
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*-3}=\frac{-4-2\sqrt{22}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*-3}=\frac{-4+2\sqrt{22}}{-6} $

See similar equations:

| 6x2+27x=0 | | -4(r+3)=8+5(-2r+4) | | k2+5k=3 | | 131=6+5(6x-5) | | -6x+1=714. | | 4-12y=2(-6+3y) | | |7x−2|=4 | | t+4/3=2 | | 2^4/2x=1 | | 50-15x=60-10x | | 2m=-5+m | | 12-2bb=4 | | -34+2x+5=12 | | 8m+14=1/3(6m-12) | | 36=4(2x-7) | | x+8+5x=62 | | 6x+14+8x=8 | | -6(1-4r)=-198 | | (b+5)(b-2)=0 | | (x)=−x2−3x | | 20=4(b-13) | | -5x-21=4x—3 | | x+(x-0,4x)=10000 | | 11y-32+63-16=180 | | 14m-10=2m-6 | | 3z+4=27 | | 6(2x−5)=2+14x | | 1200(1)+1.10b=2.50b | | 3(3x+3)+2=x-2(5x-1) | | 3n+8n=-22 | | 3(3x-2)-7=-4 | | (9x+2)+(119)=180 |

Equations solver categories