(x)(x+1)(2)=182

Simple and best practice solution for (x)(x+1)(2)=182 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)(x+1)(2)=182 equation:



(x)(x+1)(2)=182
We move all terms to the left:
(x)(x+1)(2)-(182)=0
We multiply parentheses
2x^2+2x-182=0
a = 2; b = 2; c = -182;
Δ = b2-4ac
Δ = 22-4·2·(-182)
Δ = 1460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1460}=\sqrt{4*365}=\sqrt{4}*\sqrt{365}=2\sqrt{365}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{365}}{2*2}=\frac{-2-2\sqrt{365}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{365}}{2*2}=\frac{-2+2\sqrt{365}}{4} $

See similar equations:

| x/2+9=-15 | | 8y=6(y+4)+2y | | 3(r-4)=- | | 19(18x−27)=21 | | x100=99 | | 2(s+6)=-2 | | 2(2+3x)=-2x^2 | | –2−10u=–9u | | 109+(11x+27)=180 | | r+r+8+6=-2 | | –3q+–13q+12q+5q=–13 | | x=180-(40+80) | | Y+7÷2=y+5÷1,6 | | 2x+x+12=-15 | | y/2-4=7 | | x=180-(40+35) | | p-0.1p/4=$9.00 | | -1/6=-2/x | | 5p–13=7+10p | | 5x−2=2x+16 | | y+45=‐1/10 | | -2x-10=2x-10 | | 5/6m=5 | | -5-b=7 | | -3(2x+4)+3x=15 | | 62-x=248 | | -4.8f=6.5=8.49 | | 15x2-150x+16=0 | | (2x+3)+(5x-60)=15 | | 4x²=20 | | 4x²-7x-9=21 | | 4n2=400 |

Equations solver categories