If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-150x+16=0
a = 15; b = -150; c = +16;
Δ = b2-4ac
Δ = -1502-4·15·16
Δ = 21540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21540}=\sqrt{4*5385}=\sqrt{4}*\sqrt{5385}=2\sqrt{5385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5385}}{2*15}=\frac{150-2\sqrt{5385}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5385}}{2*15}=\frac{150+2\sqrt{5385}}{30} $
| (2x+3)+(5x-60)=15 | | 4x²=20 | | 4x²-7x-9=21 | | 4n2=400 | | 8+2(x+5)=28 | | 3(6x+6)+4x=172 | | y/2.5=3 | | 4x+3+5x-3=180 | | −6.8=0.8(x+1) | | 8.8g+18.4=3.8g-15.26+1.7g | | 6x-9x2x-8x3x+72=0 | | −30=-3/4(x+4) | | j-(-10)=6 | | ¼y-7=-1 | | -30=-3/4xx+4 | | 4(x + 8) = 6x + 8 | | 3x−x+3x−4x+2x=18 | | 20+8n+20=11n-20 | | -3(x-4)+6=15x | | 1w-1w-9=6w-15 | | 7d-20-18=17+18d | | x+4+6x-2x=3x+8 | | W-(w+9)=3/4(8w-20$ | | 4m-4=-9(-m+1) | | -4m=•2 | | 20f+8+f=20f-7 | | 2.1+qq=1.8 | | 4m-4=6m+16 | | (x+4)/3+2=9 | | (p-4)7=0 | | 18-3x=4x-3 | | 4(x+8)=6x+8 |