If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(2)+13=75
We move all terms to the left:
(x)(2)+13-(75)=0
We add all the numbers together, and all the variables
x^2-62=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $
| -3=13+n | | 4h=-10+5h | | Y^2+2y-45=0 | | x^2+8x−17=0 | | 3s^2+30s+63=0 | | 8x^2=-6+9 | | -c+6(c-4)=-16+7c | | -3x+7=6-(10x+7) | | 4t=-5-t | | 5s+7=0 | | 8x-6x+5=5x+5-x | | 6x+8+9x-7=180 | | 5x/6+14=9 | | 28500=x+.15x | | −6x=−2x+12 | | 1+8c=2+.75c | | X^4/3-9x^2/3+14=0 | | 49=50-5(5-4x) | | 35=1/2(7)(6+b) | | 2x+6=x(2) | | 19y+20=6y-12 | | 8x+1=+x-1 | | a+1.32=2a-1 | | 3/5(4x+12)-8x=0 | | 12x+12+2x=6x | | -2h=7 | | -3/4b=1/8 | | 70-x=82-2x | | 10x−5= 6x−25 | | 4x+11+9x-3=180 | | 10x−5= 6x−256x−25 | | 4x-10=3x+75 |